用电磁提高大功率激光焊接质量

  这种能改变焊缝形状的能力来自Hartmann效应。具体而言,对于导电液体例如熔融金属来说,磁场会诱导电流的产生并创造出洛仑兹力场,与原始熔体流动方向相反。

  为了演示这种效果,我们模拟了3D传热、流体动力学和电磁学,并为此使用CFD模块和AC/DC模块。首先,我们模拟了电磁场来计算洛仑兹力;这些结果作为体积力来计算熔池对流的速度和压力。这使我们能够解决传热问题,速度场来自之前的对流模拟。

  当然,温度影响着材料的性能,所以我们回过头来重新计算洛仑兹力,它也取决于流动的速度。这个循环持续进行直至模拟达到稳态解决方案所需要的精度;例如,满足所涉及的所有物理问题。为了验证该模型,我们分别在施加磁场和不施加磁场的情况下进行焊接,再切开焊缝并得到其宏观形貌。然后叠加模拟的结果,结果显示出良好的一致性(图2)。    图2:用16 kW功率的激光以0.5m/min的速度进行焊接,用COMSOL Multiphysics软件得出的结果与之相叠加。不施加任何磁场的焊缝会形成酒杯形状(如a所示),在图b中,B=0.5 T,焊缝更多的像具有直边的V字形,与酒杯形状截然不同。(数据来自BAM)

  这一焊接过程极其复杂,感谢COMSOL Multiphysics软件帮助我们设法获得了准确的结果。我们认为COMSOL的优点包括易于操作、出色的几何构建和协调能力,并且能使用预定义的多重物理量(Multiphysics)耦合功能,不过有的选项需要手动调整和修改。例如,具有温度依赖性的材料属性,主要来自实验数据点或解析式,在固相速度模型使用源项,包括重力效应,还有熔化潜热(latent heat of fusion)。我们可以很方便地在计算中考虑所有这些因素。

  很高兴这一软件能够比较容易地获得物理起源的数据。感谢COMSOL Multiphysics的模拟,我们已经确定了潜在影响,并且知道如何对付它们。下一步是学会如何将这方面的知识大规模地付诸实践。我们已经确定了哪些磁场能改善焊接过程的质量,并且将进一步通过实验来重新定义整个焊接过程。

用电磁提高大功率激光焊接质量